Efficient mineral processing and hydrometallurgical recovery of by-product metals from low-grade metal containing secondary raw materials

Liesbeth Horckmans, Jeroen Spooren, Frantisek Kukurugya

VITO NV
Introduction

Current System

<table>
<thead>
<tr>
<th>Metal Production</th>
<th>Production Europe</th>
<th>Metal content</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS, FeCr</td>
<td>1.8 Mt/y</td>
<td>1-2 wt% Cr + 100-500 ppm V, Mo, Nb</td>
</tr>
<tr>
<td>LC + HC ferrochrome slags</td>
<td>~6 Mt/y</td>
<td>2-10 wt% Cr</td>
</tr>
<tr>
<td>Carbon steel slags</td>
<td>~20 Mt/y</td>
<td>1-3 wt% Cr + 100-500 ppm V, Mo, Nb</td>
</tr>
</tbody>
</table>

Metal value currently lost!

Use of steel slags. Source: Euroslag, Statistics 2010
New recovery processes for critical and valuable metals

Smart combinations of existing methods and **new technological innovations** to extract valuable and critical metals from slags

Current System

- **Primary Ores**
- **Scrap**

Metal Production

By-product: Slag

- **CS, SS, FeCr**
- **Nb, Cr, Mo, V**

Use as construction materials

-efficient mineral processing

- **fine metals to production**

Selective Leaching

- **Regenerated Leaching Solution**

- **Dilute Leachate**

Metal Depleted Stream

- **Use as construction materials**

Selective Material Recovery

- **To Metal Products**

www.chromic.eu

Efficient mineral processing and Hydrometallurgical Recovery of by-product Metals from low-grade metal containing seCondary raw materials
Type: H2020 RIA (Grant Agreement No. 730471)

Duration: 1 November 2016 – 31 October 2020

Budget: 4.8 M Euro

Coordination:

Liesbeth Horckmans, VITO NV, Mol - Belgium
CHROMIC work plan

Value chain assessment

WP1 A circular economy context and assessment of health, environmental, economic aspects and legal compliance

Technology development

WP2 Mineral processing

WP3 Selective/efficient leaching

WP4 Selective metal recovery

Technology validation

WP5 Metallurgical system validation

WP7 Project management
Three model streams

Carbon steel EAF slags
- 0-5 mm (photo)
- 20-40 mm
- 40-185 mm

LC ferrochrome slags
Crushed and sieved to 4-9 mm

Stainless steel slags
< 0.5 mm

Potential for replication to other streams
CHROMIC materials - Mineralogy

Challenge: metals (mainly Cr) present in stable phases

<table>
<thead>
<tr>
<th>Material</th>
<th>Main minerals</th>
<th>Cr-rich phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon steel EAF slags</td>
<td>Ca-silicates (larnite, gehlenite), Fe-oxides (wuestite), spinel (Fe$_3$O$_4$, MgFe$_2$O$_4$)</td>
<td>Spinel (MgCr$_2$O$_4$)</td>
</tr>
<tr>
<td>Ferrochrome slags</td>
<td>Ca-silicates (merwinite, bredigite, larnite, gehlenite), spinel (MgAl$_2$O$_4$; MgCr$_2$O$_4$)</td>
<td>Ferrochrome particles, spinel MgCr$_2$O$_4$</td>
</tr>
<tr>
<td>Stainless steel slags</td>
<td>Ca-silicates (merwinite, bredigite, gehlenite, cuspidine), calcite</td>
<td>Spinel (MgCr$_2$O$_4$)</td>
</tr>
</tbody>
</table>
Challenge: complex matrix, small particle size

Minerals intertwined at small scale (<100 µm)
Distinct Cr-rich spinels present (10-100 µm)
Challenge: complex matrix, small particle size

Small metallic particles (20-40 µm) present in matrix of Ca-silicates and with intermingled spinels

Ferrochrome slags
FeCr: ferrochrome metal
Ca: Ca-silicates
Sp: spinels containing Cr
Challenge: complex matrix, small particle size

Very small metallic particles (1-10 µm) present in matrix of Ca-silicates and with intermingled spinels

SS slags
S: SS metal
Ca: Ca-silicates
Cr: Cr-rich spinels
P: periclase
A: CaMg-silicates
Cost-efficient, selective comminution and pre-concentration

• Microwave-induced cracking

• Electrodynamically fragmented separation

• Electrostatic, magnetic, enhanced gravimetric separation

• Flotation
Technology development: Selective leaching

Efficient recovery of target metals with minimal matrix dissolution

- Microwave/radiowave assisted leaching
- Traditional/MW roasting
- Ultrasound assisted leaching
- Atmospheric/ozonation leaching

Microwave

Ultrasonic reactor

Roasting oven
Technology development: Selective metal recovery

Efficient recovery of separate target metals from mixed solution

Selective precipitation

Novel sorbents

- Layered double hydroxides

Solvent extraction

Layer: MgAl-, ZnAl-, MgFe- ... LDHs;
Cationic ratio (MeII/MeIII = 2, 3, 4...)

Interlayer exchangeable anions

Cr^{3+}, Cr(OH)_4^-, CrO_4^{2-}, VO_4^{3-}, MoO_4^{2-}, NbO_3^-
CHROMIC work plan

Value chain assessment

WP1 A circular economy context and assessment of health, environmental, economic aspects and legal compliance

Technology development

WP2 Mineral processing

WP3 Selective/efficient leaching

WP4 Selective metal recovery

Technology validation

WP5 Metallurgical system validation

WP6 Communication, Dissemination, Exploitation, Community Interaction and Clustering

WP7 Project management

www.chromic.eu

efficient mineral processing and Hydrometallurgical Recovery of by-product Metals from low-grade metal containing secondary raw materials
CHROMIC – Metallurgical system validation

Upscaling + valorisation of solid residues

Carbonation

Briquetting

Pelletising
CHROMIC work plan

Value chain assessment

WP1 A circular economy context and assessment of health, environmental, economic aspects and legal compliance

Technology development

WP2 Mineral processing
WP3 Selective/efficient leaching
WP4 Selective metal recovery

Technology validation

WP5 Metallurgical system validation

WP6 Communication, Dissemination, Exploitation, Community interaction and Clustering

WP7 Project management
CHROMIC – value chain assessment

Circular economy context, integrated LCA-RA-TEA study

Iterative process

Aim: provide feedback to technology development
CHROMIC – community interaction

CHROMIC is an inclusive project

Community involvement in three waves:

- Focus groups: lay people -> be aware of key concerns for LCA-RA-TEA
 - Ongoing (Italy, Belgium completed)
- Stakeholders -> technical/legal concerns
- 3rd wave -> to be defined based on output first two waves

4 locations: Belgium, France, Germany, Italy
Follow our progress on www.chromic.eu

 Liesbeth Horckmans
 Coordinator – VITO
 Liesbeth.horckmans@vito.be

This project received funding from the European Union’s Horizon 2020 Research and Innovation program under Grant Agreement n° 730471